Presented to:

2010 NDIA Insensitive Munitions & Energetic Materials Technology Symposium

Munich, Germany

Approved for public release; distribution unlimited. Review completed by the AMRDEC Public Affairs Office 20 Sep 2010; FN4864

RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Presented by:

J. R. (Rob) Esslinger, Jr.

Lead Mechanical Engineer

U.S. Army Aviation and Missile Research, Development and Engineering Center

14 October 2010

Evaluation of Less Shock Sensitive Minimum Smoke Propellants in High Performance Composite Cases

Yourfilename.pp

AUTHORS

J.R. Esslinger, Jr. and J.B. Neidert U.S. Army Aviation and Missile Research, Development and Engineering Center Redstone Arsenal, Alabama, USA

K. Tappe, R. Clawson, A. DeFusco, C. Wilson, S. Riley

ATK, Rocket Center, West Virginia, USA

M. Shewmaker

Naval Air Warfare Center Weapons Division China Lake, California, USA

ABSTRACT

This effort builds upon efforts to develop lower shock sensitivity minimum smoke propellants based on the ATK Cross-linked Double Base (XLDB) heritage. This family of propellants has been successfully subjected to processing development, limited aging, stabilizer depletion, mechanical property characterization, and sensitivity testing. A passive slow cookoff venting approach was implemented and prototype flightweight motors were tested under slow cookoff and bullet/fragment impact conditions.

Background

– Fast Cookoff (FCO)

- Significant weakening of composite case due to direct exposure to fuel fire during IM test
 - Surface temp >> Tg
 - Little residual confinement for thin-walled composite cases
 - » Passive SCO venting devices may function in FCO scenario
 - » Apparent reduction in heating rate possible due to storage condition (e.g., containerized, round pallet config.) – *leads toward intermediate rate cookoff scenario*

– <u>Slow Cookoff (SCO)</u>

- Some benefit from composite case alone (present design configurations)
 - Composite case generally provides less severe reaction due to slump and inherently lower dynamic yield strength
 - Conditions leading to increased thermal soak (i.e., slowest heating rates, packaging) can lead to more violent reactions
- Mitigation device required
 - Motor-level built-in passive SCO mitigation device(s) desired from cost and ease of integration standpoint
 - End venting offers attractive solution
 - » Does not necessarily equal reduction in confinement (may be less effective for increasing length-to-diameter ratios)

Background

Bullet Impact (BI)

- Propellant shock sensitivity provides more dominant effect
- Composite cases shown to reduce severity of reaction
 - Elimination of case fragment spall into propellant
- Case design options for preferential fragmentation possible
 - Enhanced venting
- Fragment Impact (FI)
 - Propellant shock sensitivity provides more dominant effect
 - Composite cases shown to reduce severity of reaction
 - Reaction very dependant on fragment velocity (energy)
 - Energy dissipation approaches in packaging may be applied
 - Large volume penalties
 - Not practical for bare round configuration

Propellant Selection

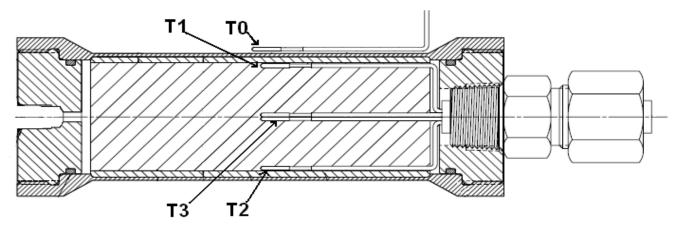
Ingredient/Property	Current Production	First Generation	Second Generation		
Category	Sensitive Class 1.1	Reduced Sensitivity MS Propellant Candidates			
DOB	1979	1992	2002		
Formulation type	XLDB binder with high nitramine	XLDB binder with AN and Casting Powder modifier	XLDB binder with AN and Co- oxidizers , Metal Salt modifiers		
Isp (% of baseline) Card Gap (cards) Critical Diameter (in)	100% 145 <0.5	95% 65 1.0	93-94% 65-80 0.5 - 0.75		
Mix Scale Manufactured (Ibs)	2,000	1,000	100 100		
Application	Fielded Tactical Motors	Development & Advanced Development Motors	Fixed Throat Advanced Development Motors	Controllable Thrust RDT&E Motors	
Deficiencies	Sensitive	Limited ballistics & mechanicals	Excellent mechanical properties, cold strain capability & processibility, higher operating pressure		

Second Generation MS Propellant has Unsurpassed Strain Capability at Very Low Temperatures

Fourteen Different Formulations Evaluated and Show Strain Capabilities Approaching 90% @ -54°C (do not become brittle)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Propellant Comparison and Tested Configurations


Yourfilename.ppt

Formulation/Properties	XLDB			
NOL Card Gap (cards)	70	65	70	63
Co-oxidizer Type	RS-RDX		CL-20	
Full-scale IM Testing Performed	BI LVFI SCO	Demonstrated production- readiness for drying and grinding operations	BI HVFI SCJ	BI LVFI HVFI SCO
Case Materials	Composite		Composite	Composite & Aluminum
Relative performance	92.8%		93.4%	92.0%

- The initial focus of this effort was to implement an engineering solution for slow cookoff mitigation.
 - Inherent to this task was to determine the autoignition response of the propellant under confinement.
- An instrumented sub-scale cookoff chamber was designed and utilized to obtain thermal profiles at the surface, the propellant interface, and the center of the grain.
 - Heating was applied via a fitted thermal heating jacket with electronic controller.
 - The XLDB propellant formulation containing RS-RDX was utilized.

Instrumented Sub-scale Cookoff Chamber (propellant charge 45.7 mm diameter x 114.3 mm long)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Sub-scale Cookoff Chamber Test Data

S/N	Chamber Material	Wall Thickness (mm)	Heating Rate (°C/hr)	T0 (°C)	T1 (°C)	T2 (°C)	T3 (°C)
MS-5	Aluminum	2.54	25	144	143	142	128
MS-6	Aluminum	1.27	25	139	136	141	128
MS-7	Steel	1.27	25	141	138	133	124
MS-8	Steel	0.76	25	133	129	134	123
MS-17	Aluminum	2.54	3.3	127	123	123	144*
MS-18	Aluminum	1.27	3.3	119	117	117	118
MS-19	Steel	1.27	3.3	126	126	125	143*
MS-20	Steel	0.76	3.3	121	123	121	123

* thermocouple data indicates reaction at or near thermocouple tip for MS-17 and MS-19

Average Temperature Data

Heating Rate	Surface	Interface	Center Temp.	DSC Initiation
(°C/hr)	Temp. (°C)	Temp. (ºC)	(°C)	Temp. (°C)
25	139	137	126	-
3.3	123	122	121*	131

* MS-17 and MS-19 center thermocouple excluded

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- The 3.3°C/hr tests exhibited significantly more violent reactions than did the 25°C/hr tests.
 - Significant amount of un-reacted propellant recovered from 25°C/hr tests
 - Post-test evidence from 3.3°C/hr chambers show increased distortion and heat-affected material

Post-test View of MS-7 (25°C/hr)

Post-test view of MS(3.3°C/hr)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- The sub-scale chamber design was modified to incorporate a shape memory alloy (SMA) actuated closure release mechanism.
 - The SMA is configured such that one of the chamber end closures is unlatched by the SMA reaching its activation temperature during the test
- The temperature data correlates well with the 3.3°C/hr data from the previous tests
 - the venting device allowed the closure to release from the chamber to prevent a violent reaction

S/N	Т0	T1	T2	Т3
	(°C)	(°C)	(°C)	(°C)
MS-21	120	121	121	121
MS-22	122	122	123	121
MS-23	128	126	126	137
MS-24	120	124	119	119
MS-25	120	123	124	126
MS-26	126	-	-	-
MS-27	127	123	124	126
MS-28	122	-	119	112
Average	123	123	122	123
STDEV	3	2	3	8

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Full-scale SCO Venting Test (3.3°C/hr)

- The SMA-based SCO venting approach was implemented in a 178 mm composite-cased test motor
- Expanding propellant grain gently pushed the aft closure away from the motor – air temperature was approx. 130°C.
 - At some time prior to this event, the passive venting feature had released the nozzle closure from the rocket motor case as designed.
 - About 14 minutes later, the remaining propellant burned.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Bullet & Fragment Impact Results

Propellant	XLDB MS Propellant (no co-oxidizer)	XLDB MS Propellant (no co-oxidizer)	XLDB MS Propellant w/ RS-RDX	XLDB MS Propellant w/ CL-20		
NOL Card Gap	63	63	70	70		
Case	178mm dia. Aluminum	178mm dia. Composite				
Grain type	СР	Boost-Sustain				
Shotline	Center	Center				
BI	No Reaction	No Reaction No Reaction				
FI (6000 fps / 1829 m/s)	> 85% of material recovered. Multiple fragments beyond 15 m	No Reaction Motor cut in half. All material within 15 m				
FI (8300 fps / 2530 m/s)	Detonation	No Reaction		No Reaction		

- The bullet and fragment impact results begin to illustrate the incremental improvements available from composite case construction and less shock-sensitive propellants.
 - IM compliance for a reasonably energetic propellant under high-velocity fragment conditions is unlikely in a metallic case.
 - There is a limit to the secondary benefits of the composite case.
- The future challenge is to improve ballistic performance and tailorability while maintaining IM characteristics.
 - Composite case technology is readily available and has been shown to improve IM performance for bullet and fragment impact when coupled with a less shock-sensitive propellant.

Comparison of Aluminum and Composite Cases with XLDB Propellants under BI & FI

BI – Aluminum Case (XLDB, no co-oxidizer)

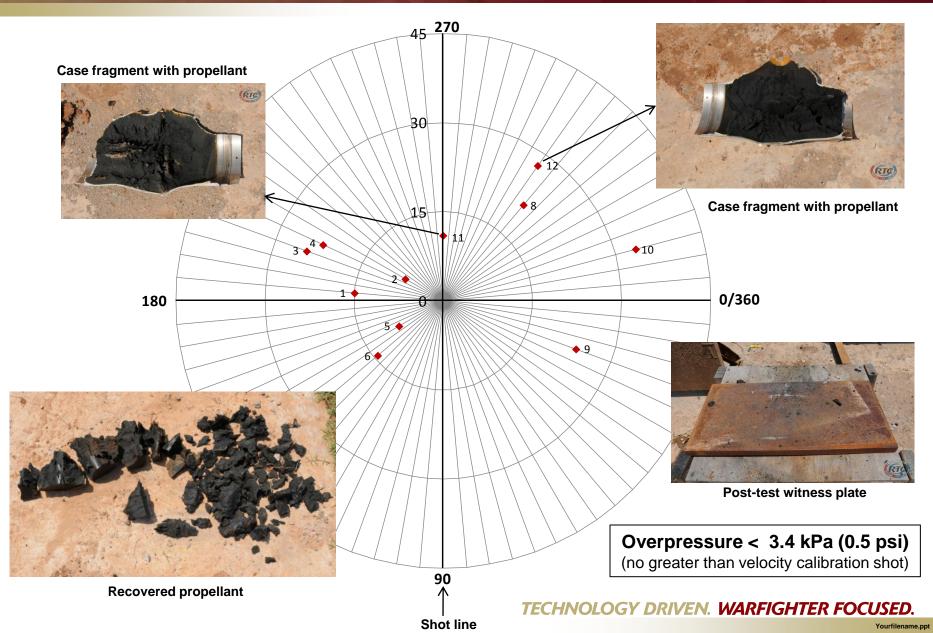
RDECOM

1829 m/s FI - Aluminum Case (XLDB, no co-oxidizer)

2530 m/s FI – Aluminum Case (XLDB, no co-oxidizer)

BI – Composite Case (XLDB, w/ RS-RDX)

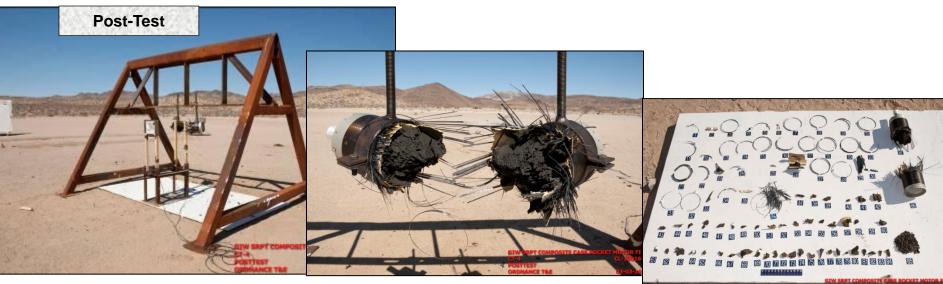
1829 m/s FI – Composite Case (XLDB, w/ RS-RDX)


2530 m/s FI - Composite Case (XLDB, no co-oxidizer)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

1829 m/s FI to Aluminum Case with XLDB (no co-oxidizer)

2530 m/s FI to Composite Case with XLDB (CL-20 co-oxidizer)



Yourfilename.ppt

Motor Did Not React!

~127 mm of center section produced all fragments. Four <u>non-lethal</u> fragments beyond 15 m.

Conclusion

Yourfilename.ppt

- This effort has focused on technology that is reaching the requisite level of maturity for transition to propulsion system development efforts
 - Demonstration motors utilized flightweight hardware
 - Testing focused on developing a practical understanding of critical parameters
- This effort represents the beginning of a larger effort to demonstrate an IM propulsion system in a relevant environment.
 - There is a desire to improve the performance of less shock-sensitive propellants
 - The propellants investigated in this study represent the best compromise <u>currently available</u> between ballistic performance, IM, and mechanical properties
- Technology development and demonstration efforts continue under the U.S. Department of Defense Joint Insensitive Munitions Technology Program (JIMTP)